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1. Introduction

The standard approach to computing perturbative scattering amplitudes is to develop a

Feynman diagram expansion using Feynman rules, which in turn follow directly from a

bare Lagrangian. While this procedure is very well understood [1], the complexity of the

calculation grows so rapidly with increasing order that it seriously challenges our ability,

especially at one loop and higher, to compute background processes to the accuracy that

must be known if we are to exploit fully the new physics potential of the LHC [2].

Stemming from two remarkable papers [3, 4], dramatically simpler methods have been

developed which could help solve this problem. These so far apply mostly to scattering

amplitudes in gauge theories at tree level [5, 6] but also to some one-loop amplitudes [10,

8, 9, 7].

The starting point is the set of maximally helicity-violating (MHV) amplitudes: the

tree-level colour-ordered partial amplitudes for n− = 2 negative helicity gluons and any

number n+ ≥ 1 of positive helicity gluons.1 Despite the factorial growth in complexity

of the underlying Feynman diagrams for increasing n+, when these are written in terms

of some associated two-component spinors, the amplitudes collapse to a single simple ra-

1Throughout the paper we label all external momenta as out-going.
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tio [11]. As if this were not astonishing enough, considerations of topological string theory

in twistor space [3] led Cachazo, Svrcek and Witten to conjecture that arbitrary (n+, n−)

tree-level amplitudes of gluons may be calculated by sewing together certain off-shell contin-

uations of these MHV amplitudes with scalar propagators, using colour-ordered Feynman

rules [4]. These “MHV-rules” (a.k.a. CSW rules) result in much simpler expressions for

generic small n−, growing in complexity only polynomially with increasing n+. Under

parity, we can exchange n+ ↔ n−, resulting in an alternative expansion via MHV-rules.

The MHV rules were proven indirectly as a consequence of another development [12]:

the BCFW recursion, an expansion of colour-ordered amplitudes involving simultaneously

both MHV and MHV sub-amplitudes, which in some cases leads to even more compact

expressions albeit at the expense of introducing unphysical poles in intermediate terms.

The recursion equation results from using Cauchy’s theorem on a carefully chosen complex

continuation, to reconstruct the amplitude from its poles. This idea has been generalised to

provide a direct proof of the MHV rules [13], and applied and extended at tree-level to both

Yang-Mills and other theories [6]. It has also been generalised to one-loop amplitudes [7, 9],

although the appearance of physical cuts, spurious cuts, higher poles in complex momenta,

and the need for regularisation in general, limits the power of this idea.

In a separate and initially unexpected development, the MHV rules have been ap-

plied successfully at one loop [10, 14, 9] by again tying together the same off-shell con-

tinuation of the MHV amplitudes with scalar propagators. This is meant to provide the

cut-constructible parts of one-loop amplitudes (which is the whole one-loop amplitude in

theories with unbroken supersymmetry). Although much evidence supports this contention,

a full proof has been missing [15] — until now (see below).

The cut-constructible parts of one-loop amplitudes are specified because these are

directly related to tree amplitudes via their cuts. No claim is made therefore to generate

the full one-loop amplitude in non-supersymmetric theories from MHV rules. Indeed, it is

known that certain non-constructible (parts of) one-loop amplitudes are not generated by

MHV rules [16], a fact that we will return to in the conclusions.

As can be gleaned even from this short survey, a feature of these new developments is

that they lie outside the Lagrangian framework, proceeding by a combination of inspired

conjecture and varying levels of proof.

All this potentially changes with Mansfield’s paper however [17]. According to this

paper, a change of field variables satisfying certain specific properties transforms the stan-

dard Lagrangian into an equivalent MHV-rules Lagrangian, i.e. one involving effectively a

complex scalar whose vertices are proportional to the CSW off-shell continuation of the

MHV amplitudes, so that it directly generates at tree level the CSW rules. (For a different

approach to such a Lagrangian, see ref. [18]. For approaches via (ambi)twistor space see

ref. [19].)

Assuming the validity of this proposal, we can apply at once the well developed quan-

tum field theory framework [1] to confirm and extend these methods. For example, if

we side-step for the moment the issue of regularisation, by concentrating on the cut-

constructible parts of one-loop amplitudes at non-exceptional momenta, the existence of

the MHV-rules Lagrangian shows immediately that the program of refs. [10, 14, 9, 15] is
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correct because the application of MHV rules at one loop simply means in this framework

that one constructs the one loop amplitudes by using this equivalent Lagrangian. (Actu-

ally, we need to take into account ‘ET matching factors’. These are certain wave function

renormalization matching factors that arise from applying the equivalence theorem [1, 20],

however we will see later that they vanish.)

It also means that, up to modifications which are necessary to provide a full regulari-

sation (which is also much easier to figure out within standard quantum field theory) and

the ET matching factors, the MHV rules must work for the full amplitudes at any number

of loops. In particular we can expect that MHV rules supply the full amplitude at any

loop in finite supersymmetric theories (e.g. N = 4 Yang-Mills).

We make further comments about this framework in the conclusions.

The structure of the rest of the paper is as follows. In the next section we briefly

review Mansfield’s construction [17], which is based on light-cone quantization, and state

precisely the form the MHV-rules Lagrangian should take, paying attention to conventions.

We note in passing that the arbitrary null vector introduced by Cachazo, Svrcek and Witten

to define off-shell continuations is exactly the one defining light-cone time.

In section 3, we give the transformation explicitly to all orders by deriving recurrence

relations, which we then solve. We find that the expansion coefficients take simple forms

and are in particular already holomorphic. From Mansfield’s arguments it follows that the

resulting vertices yield the MHV-rules Lagrangian, however we nevertheless check explicitly

that the required three, four and five point vertices are obtained.

In section 4, we investigate the one-loop ET matching factors. These are examples of

terms that could not be anticipated using the earlier methods. In the massless case however

(as here) it is easy to argue that they vanish in dimensional regularisation. Although we

are missing the full regularisation, the leading divergent pieces should be trustworthy. We

check explicitly and find indeed that they are forced to vanish.

Finally, in section section 5, we draw our conclusions.

2. Notation and transformation

In this section we review the form of the transformation to an MHV-rules Lagrangian

as proposed in ref. [17]. We define closely allied notation, but pin down several factors

involved in comparison with the MHV rules.

2.1 Preliminaries

Mansfield maps from the Minkowski coordinates (t, x1, x2, x3) using a (+,−,−,−) signature

metric to ones appropriate for light-front quantization i.e. quantization surfaces of constant

x0 = µ · x, where µν is some constant null-vector. Defining Minkowski coordinates so that

µν = (1, 0, 0, 1), the map is

x0 = t − x3, x0̄ = t + x3, z = x1 + ix2, z̄ = x1 − ix2. (2.1)

In these coordinates, the metric has covariant components g00̄ = g0̄0 = −gzz̄ = −gz̄z = 1/2,

all others being zero.
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We will mostly deal with covariant vectors (1-forms) for which it is useful to introduce

a more compact notation, thus we write (p0, p0̄, pz, pz̄) ≡ (p̌, p̂, p, p̄). This allows us, in

sympathy with the literature, to write components of external momenta simply by the

number of the leg with the appropriate decoration, thus the nth momentum pµ
n will simply

be written as (ň, n̂, ñ, n̄). Note that we put a tilde over the z component in this case, so

that ñ will not be confused with a numerical factor of n [see e.g. (2.4), (2.5)].

We can write any 4-vector in the form of a bispinor with components pαα̇ as

(pαα̇) =
(
pt δαα̇ + p · σαα̇

)
= 2

(
p̌ −p

−p̄ p̂

)
, (2.2)

where σ is the usual 3-vector formed of the Pauli matrices. If pµ is null, p̌p̂ = pp̄ and

the bispinor factorises: pαα̇ = λαλ̃α̇. For real (pt,p), λα and λ̃α̇ are related by complex

conjugation. For momenta, it is helpful to make the choice:

λ =
√

2

(
−p/

√
p̂√

p̂

)
and λ̃ =

√
2

(
−p̄/

√
p̂√

p̂

)
. (2.3)

Of particular importance for MHV rules is the ‘angle bracket’ invariant, which we can now

express as

〈1 2〉 := εαβλ1αλ2β = 2
(1 2)√

1̂2̂
, (2.4)

where the two-dimensional alternating tensor has ε12 = 1, and we have introduced

(1 2) ≡ (p1 p2) := 1̂2̃ − 2̂1̃. (2.5)

We can similarly express the contragredient invariant [λ1 λ2] := εα̇β̇λ̃1α̇λ̃2β̇
in terms of the

complex conjugate 2{1 2}/
√

1̂2̂, where

{1 2} := (1 2)∗ = 1̂2̄ − 2̂1̄. (2.6)

Choice (2.3) is not suitable for µαα̇ = ναν̃α̇, since the only non-zero covariant component

is µ̌ = 1. Thus from (2.2) we take instead

ν = ν̃ =

(√
2

0

)
.

The standard polarisations for a massless on-shell vector boson of momentum p,

E+ =
ν λ̃

〈ν λ〉 and E− =
λ ν̃

[λ ν]
,

then have non-zero components

E+ = −1

2
, Ē− =

1

2
. (2.7)

There are also Ě+ = −p̄/2p̂ and Ě− = p/2p̂, although these time-like components will not

be needed. (The remaining components vanish.)
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Importantly, (2.3) contains no reference to p̌ and makes sense even for non-null mo-

menta. In this case, the spinors factor the bispinor associated to the null momentum

p + aµ, where a = pp̄/p̂ − p̌. This definition is equivalent to the CSW prescription for

taking the spinors off-shell [4, 17], providing the CSW spinor is identified (projectively)

with ν. Indeed, the CSW prescription is to introduce a fixed spinor η and take the off-shell

momentum spinor to be proportional to

εα̇β̇pαα̇η̃
β̇

= λα[λ η] − aνα[ν η],

so the two definitions coincide when η ∝ ν. We thus arrive at the satisfying conclusion

that the arbitrary null vector ηαη̃α̇ is just µαα̇, the vector defining light-cone time and the

quantization surface.

2.2 The transformation

We take the Yang-Mills action written as [17]

S =
1

2g2

∫
dt dx1dx2dx3 tr F λρFλρ, (2.8)

where

Fλρ = [Dλ, Dρ], Dµ = ∂µ + Aµ, Aµ = Aa
µT a, (2.9)

and the generators of the internal group have been taken as anti-Hermitian:

[T a, T b] = fabcT c, tr (T aT b) = −1

2
δab. (2.10)

We choose light-cone gauge Â = 0, discarding the non-interacting Fadeev-Popov ghosts,

and integrate out the longitudinal field Ǎ (which appears quadratically and is not dynam-

ical, in the sense that the Lagrangian has no terms ∂̌Ǎ).

The resulting action takes the form

S =
4

g2

∫
dx0L, (2.11)

where L is the light-cone Lagrangian defined as an integral d3x = dx0̄ dz dz̄ over surfaces

Σ of constant x0. From (2.7), A (Ā) has only positive (negative) helicity on-shell states.

Labelling the parts by the participating helicities L = L−+ + L++− + L−−+ + L
′−−++,

where

L−+[A] = tr

∫

Σ
d3x Ā (∂̌∂̂ − ∂∂̄)A (2.12)

L++−[A] = −tr

∫

Σ
d3x (∂̄∂̂−1A) [A, ∂̂Ā] (2.13)

L−−+[A] = −tr

∫

Σ
d3x [Ā, ∂̂A] (∂∂̂−1Ā) (2.14)

L
′−−++[A] = −tr

∫

Σ
d3x [Ā, ∂̂A] ∂̂−2 [A, ∂̂Ā]. (2.15)
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Now we define a canonical change of variables from A to B to absorb the unwanted

term L++− into the kinetic term:

L−+[A] + L++−[A] = L−+[B]. (2.16)

This means that the transformation is performed on the quantization surface Σ with all

fields having the same time dependence x0 (which henceforth we suppress). It induces the

following transformation for the canonical momenta:

∂̂Āa(y) =

∫

Σ
d3x

δBb(x)

δAa(y)
∂̂B̄b(x). (2.17)

Substituting this back into (2.16) yields the defining relation between A and B:

∫

Σ
d3y

[
D,

∂̄

∂̂
A

]a

(y)
δBb(x)

δAa(y)
=

∂∂̄

∂̂
Bb(x). (2.18)

It follows that A is a power series in B, of the form A = B + O(B2) (at least for general

momenta: see further comments in section 3) and thus from (2.17), Ā is a power series in

B each term containing also a single B̄, of the form Ā = B̄ + O(B̄B).

Thus it follows from the equivalence theorem that we can equally well use B (B̄)

as the positive (negative) helicity field in place of A (Ā) [1, 17]. The canonical nature

of the transformations ensures that the change of variables in the functional integral has

unit jacobian [17], whilst substituting the transformations into L results, from (2.16) and

(2.14), (2.15), in a Lagrangian with an infinite number of interactions each containing just

two B̄ fields and an increasing number of B fields:

L = L−+[B] + L−−+[B] + L−−++[B] + L−−+++[B] + · · · . (2.19)

This has precisely the structure required to be identified with the MHV-rules Lagrangian,

in the sense that its tree level perturbation theory generates CSW rules with the Feynman

rules following from these vertices. It follows immediately that these vertices when taken

on-shell must be proportional to the corresponding MHV amplitude since only one vertex is

used to construct the tree-level amplitude with the right helicity assignment of two negative

and any number positive helicities. (Using two or more vertices results in “NnMHV”

amplitudes with more than two negative helicities.)

It remains to show that when off-shell, these vertices must give the CSW continuations

of the MHV amplitudes. Mansfield argues that this would follow from the fact that the

vertices contain no explicit x0 dependence (or ∂̌) if one can show that the vertices are also

holomorphic in the sense that they contain no ∂̄ derivatives. We will see that this is true at

least for general momenta. Mansfield argues that this holomorphy follows from considering

the homogeneous transformations:

δA = [A, θ] and δĀ = [Ā, θ], (2.20)

where θ is a function of z̄ only. He uses the fact that this corresponds to the shift δ∂̄A =

[A, ∂̄θ] when acting on (2.16), the equation defining the expansion, and does not leave it

invariant, whereas (2.20) does leave invariant the sum of the two terms (2.14), (2.15) which
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generates all the vertices in (2.19). From this viewpoint however, it is a surprise to find that

the coefficients of the series for A (Ā) themselves are already holomorphic. Furthermore,

we will show that they take a very simple form.

2.3 The precise correspondence

Clearly, it would be very welcome to investigate explicitly the transformation (2.17), (2.18)

and its effect on the vertices. In order to do this, we write the general n-point term in

(2.19) in 3-momentum space as

1

2

n∑

s=2

∫

12···n
V s

12···n tr[B̄1̄B2̄ · · · B̄s̄ · · ·Bn̄], (2.21)

where the bar on the indices indicates that the 3-momentum dependence is Bk̄ ≡ B(−pk)

(we continue to suppress their common x0 dependence, which is not Fourier transformed),

the missing fields in the trace being Bk̄s. The components of p are expressed, as always,

as (p̂, p, p̄). The integral shorthand means, here and later,
∫

12···n
≡

n∏

k=1

∫
dp̂k dpk dp̄k

(2π)3
,

and the vertex is expressed as

V s
12···n = (2π)3δ3(p1 + p2 + · · · + pn)V s(p1,p2, . . . ,pn). (2.22)

Throughout the paper, expansion coefficients, vertices and amplitudes carry these mo-

mentum conserving delta-functions; they will be factored off in this manner and thus not

written explicitly. We often simply write V s(12 · · · n) ≡ V s(p1,p2, . . . ,pn). It should be

borne in mind that from (2.22) such coefficients are only defined when their momentum

arguments sum to zero.

Note that, by using (2.10), we can always express the group theory factors as traces of

products of the Bs and B̄s valued in the Lie algebra, as in (2.21). This form leads to the

required colour-ordered Feynman rules. We will express group theory factors throughout

by absorbing them in the fields, including for the expansion coefficients of section 3.

By the cyclicity of the trace, we can always arrange for the first field in (2.21) to be

a B̄. Since we have a choice of two B̄s, we could have restricted the sum in (2.21) to

s ≤ bn/2+1c, however by writing it as a full sum over s and dividing the result by two, we

get the same thing except that the bn/2+1cth vertex is accompanied by a factor 1
2 when n

is even, consistent with the fact that it alone has a Z2 symmetry under exchange of the B̄s.

We would like to compare V s
1···n to the MHV amplitude [11]:

An = gn−2 〈r s〉4
〈1 2〉〈2 3〉 · · · 〈n − 1, n〉〈n 1〉 , (2.23)

r and s being the negative helicity legs, itself a component of the full tree-level amplitude:
∑

σ

tr (T a
σ(1) · · ·T a

σ(n)) (2π)4i δ4(p1 + · · · + pn)Aσ
n, (2.24)

the sum being over distinct cyclic orderings σ. However this is written with different

conventions.

– 7 –
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There are many ways to perform the translation. Perhaps the following is simplest. The

normalization for the generators in (2.23), (2.24) is such that tr (T aT b) = δab and [T a, T b] =

i
√

2fabcT c [21]. Comparing with (2.10) we see we need to replace T a 7→ −iT a/
√

2. To

form the momentum space Feynman rule from (2.21) and (2.22), we Fourier transform the

x0 dependence also, obtaining a four-dimensional delta-function as in (2.24), however in

our case it is defined via (2.1) to be

(2π)4δ4(p) =

∫
dx0dx0̄dz dz̄ e i(p̌ x0 + p̂ x0̄ + p z + p̄ z̄).

As can be seen by computing the jacobian or
√−g, this is four times the one in (2.24).

Noting that pµpµ = 4(p̌p̂−pp̄), we see that (2.11) and (2.12) yield the propagator 2ig2δab/p2.

To bring this to canonical normalization requires absorbing 2g2 by B 7→ Bg
√

2 (similarly

B̄). Combining all these with the prefactor from (2.11), we see that the r = 1 MHV

amplitude should be given by

16

g2
(−ig)n V s(12 · · · n) (E+)n−2 (Ē−)2.

Of course the factor 1
2 for the even-n bn/2 + 1cth vertex in (2.21) is cancelled here by the

two ways to form this amplitude. Finally, from (2.7), (2.23) and (2.4) we thus expect to

find

V s(12 · · · n) = (2i)n−4 〈1 s〉4
〈1 2〉〈2 3〉 · · · 〈n − 1, n〉〈n 1〉

= in
2̂ · · · n̂ (1 s)4

1̂ŝ2(1 2)(2 3) · · · (n − 1, n)(n 1)
. (2.25)

3. Explicit expansion

In this section we derive recursion relations for the expansions satisfying (2.18) and (2.17)

in the case that A and B have support only on general momenta. We then solve these

and use the results to confirm (2.25) for the three point, the two four-point and the two

five-point vertices.

3.1 A expansion coefficients to all orders

Rearranging (2.18) and transforming to 3-momentum space yields

ω1A1 − i

∫

23
ζ3[A2, A3] (2π)3δ3(p1 − p2 − p3) =

∫

p

ωpBb
p

δA1

δBb
p

, (3.1)

using the notation set up in subsection 2.3, and introducing ζp ≡ ζ(p) = p̄/p̂ and ωp =

pp̄/p̂.

From this one would be tempted to conclude that at lowest order Ap = Bp and thus

in general, absorbing the group theory generators into the fields, A has an expansion in B

of the form

A1 =

∞∑

n=2

∫

2···n
Υ12···n B2̄ · · ·Bn̄, (3.2)

– 8 –
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where Υ(p,−p) = 1. However we have to divide through by ωp to conclude that Ap = Bp

to lowest order, and since ωp vanishes when p = 0 or p̄ = 0, more general solutions exist

where Ap has a piece not containing Bp but with delta-function support, viz. δ(p̄) and/or

δ(p).

It is tempting to ignore these terms, however we cannot do so and also implement

some expected residual gauge invariances: the light cone action (2.11) is arrived at by

fixing the gauge µ · A ∝ Â = 0. This leaves gauge transformations δAµ = [Dµ, θ] unfixed

providing θ does not depend on ẑ. If θ depends on x0, we can expect the form of the gauge

transformation to be modified as a result of Ǎ being integrated out. On the other hand,

it is easy to check that (2.11) is invariant under holomorphic gauge transformations θ(z),

providing we interpret2 ∂̄∂̂−1θ := ∂̂−1(∂̄θ) = 0. Similarly (by symmetry) we also have

antiholomorphic gauge invariance generated by θ(z̄).

Now, the left hand side of (2.16) is actually invariant under holomorphic gauge trans-

formations which indicates that B and B̄ must also be invariant. Indeed this ensures

that the defining transformations (2.17), (2.18) transform covariantly. However, (3.2) only

transforms covariantly if we allow for an extra term independent of B and proportional to

δ(p̄1) to absorb the gauge transformation. This indicates one should really interpret (3.2)

as amounting to further gauge fixing. For the present we will simply declare that (3.2) is

to be applied only for generic momenta in particular such that p1 and p̄1 are non-zero.

Substituting (3.2) in (3.1), comparing coefficients and stripping off momentum con-

serving delta functions as in (2.22), yields the recurrence relation:

Υ(1 · · · n) =
i

ω1 + · · · + ωn

n−1∑

j=2

(ζj+1,n − ζ2,j)Υ(−, 2, . . . , j)Υ(−, j + 1, . . . , n), (3.3)

where the arguments labelled “−” are minus the sum of the remaining arguments (as follows

from momentum conservation) and we have defined ζj,k = ζ(Pj,k) with Pj,k =
∑k

i=j pi

(similarly for ωj,k below). The next two coefficients are thus

Υ(123) = i
ζ3 − ζ2

ω1 + ω2 + ω3
, (3.4)

Υ(1234) =
1

ω1 + ω2 + ω3 + ω4

[
(ζ4 − ζ3)(ζ3,4 − ζ2)

ω3,4 − ω3 − ω4
+

(ζ4 − ζ2,3)(ζ3 − ζ2)

ω2,3 − ω2 − ω3

]
. (3.5)

Although apparently not holomorphic, once they are expressed in terms of independent

momenta and simplified, all p̄k dependence drops out, resulting in very compact expressions:

Υ(123) = −i
1̂

(2 3)
,

Υ(1234) =
1̂3̂

(2 3)(3 4)
,

Υ(12345) = i
1̂3̂4̂

(2 3)(3 4)(4 5)
.

2We note that this is consistent with the Mandelstam-Leibbrandt prescription [22].
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We have displayed the four-point coefficient which we also checked explicitly. Now we prove

by induction that the general coefficient takes the form

Υ(1 · · · n) = in
1̂3̂4̂ · · · n̂ − 1

(2 3)(3 4) · · · (n−1, n)
, (3.6)

where n ≥ 4. It is sufficient to show that substituting (3.6) into the right hand side of (3.3)

yields the left hand side. Substituting (3.6) into the right hand side yields

− Υ(1 · · · n)

1̂(ω1 + · · · + ωn)

n−1∑

j=2

(j, j+1)

ĵ ĵ+1
{P2,j Pj+1,n},

after due care with the ends of the sum. Expanding the (j, j+1) term and relabelling so

that both halves are indexed by j converts the sum to

n∑

j=2

j̃

ĵ
({P2,j−1 Pj,n} − {P2,j Pj+1,n}) ,

where contributions at the end of the sum are correctly incorporated by defining Pj,k = 0

when j > k. Writing P2,j = P2,j−1 + pj and Pj+1,n = −P2,j−1 − p1 − pj, and using the

antisymmetry of (2.6), the sum collapses to −1̂(ω1 + · · ·+ ωn), proving the assertion (3.6).

3.2 Ā expansion coefficients to all orders

Differentiating (3.2) with respect to B and substituting the inverse into (2.17) yields an

expansion for Ā of the form

1̂Ā1̄ =

∞∑

m=2

m∑

s=2

∫

2···m
ŝ Ξs−1

1̄2···m
B2̄ · · · B̄s̄ · · ·Bm̄, (3.7)

where the superscript on Ξ labels the relative position (not momentum) of the B̄ field and

the missing fields are Bk̄s. We use the invariant

tr

∫

Σ
d3x ∂̌A∂̂Ā = tr

∫

Σ
d3x ∂̌B∂̂B̄

to extract a recurrence relation. Recalling that all fields have the same x0 dependence, we

have from (3.2),

∂̌A1 =

∞∑

n=2

n∑

r=2

∫

2···n
Υ12···n B2̄ · · · ∂̌Br̄ · · ·Bn̄.

Substituting this and (3.7) into the above, using cyclicity of the trace and several careful

relabellings we find:

Ξl(1 · · · n) = −
n+1−l∑

r=2

r+l−1∑

m=max(r,3)

Υ(−, n−r+3, . . . ,m−r+1) ×

Ξl+r−m(−,m−r+2, . . . , n−r+2), (3.8)
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where l = 1, . . . , n − 1, the momentum indices on the right hand side must be interpreted

cyclically, i.e. mod n, and Ξ1(p,−p) = 1. [Note that m is the number of arguments in Υ.

The inner sum should be interpreted as zero when r = 2 and l = 1, alternatively the lower

limit in r can be given as max(2, 4 − l).] From this, or directly, one can readily compute

the first few coefficients:

Ξ1(123) = −Υ(231),

Ξ2(123) = −Υ(312),

Ξ1(1234) = −Υ(2+3, 4, 1)Ξ1(1+4, 2, 3) − Υ(2341),

Ξ2(1234) = −Υ(3+4, 1, 2)Ξ1(1+2, 3, 4) − Υ(2+3, 4, 1)Ξ2(1+4, 2, 3) − Υ(3412),

Ξ3(1234) = −Υ(3+4, 1, 2)Ξ2(1+2, 3, 4) − Υ(4123).

Clearly, since the Υ coefficients are already holomorphic, the Ξs will turn out to be also.

In fact they take a very simple form when expressed in terms of Υ:

Ξs−1(1 · · · n) = − ŝ

1̂
Υ(1 · · · n), (3.9)

(s = 2, . . . , n and n ≥ 2).

Let us now prove this assertion. Again, it is sufficient to show that substituting (3.9)

into the right hand side of (3.8) yields its left hand side. Substituting (3.9) into the right

hand side and using (3.6), we find we can extract a factor of Ξl(1 · · · n) and thus learn that

proving (3.9) is equivalent to proving that

n+1−l∑

r=2

r+l−1∑

m=max(r,3)

(m−r+1, m−r+2)(n−r+2, n−r+3)P̂n−r+3,m−r+1

m̂−r+1 m̂−r+2 ̂n−r+2 n̂−r+3

equals

−(1 2)(n 1)

1̂2̂n̂
(3.10)

In a similar way to the proof of (3.6), we now expand the factor (m−r+1, m−r+2) and

relabel so that both halves are collected. (However since here momentum labels are treated

mod n, P̂j,k means summing from j increasing to k, going through 1 when k < j.) This

allows us to perform the inner sum with the result displayed in braces:

n+1−l∑

r=2

(n−r+2, n−r+3)

̂n−r+2 n̂−r+3

{
−P̃q+2,l +

l̃ + 1

l̂ + 1
P̂n−r+3,l −

q̃ + 1

q̂ + 1
P̂n−r+3, q+1

}
. (3.11)

Here q = 1 if r = 2 otherwise q = 0. We note that the term in curly brackets vanishes when

r = 2 and l = 1, as required, cf. below (3.8). At this stage it proves useful to consider the

case l = n − 1 separately. Substituting this into (3.11) gives

(n 1)

1̂n̂

{
ñ + 1̃ + 2̃ − ñ − 2̃

2̂
P̂1,2

}
,
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where we have used momentum conservation on the first two terms in curly brackets. It is

immediate to see that this gives (3.10) as required. For l < n−1, we expand (n−r+2, n−r+3)

and collect both halves. This gives

P̃1,l+1

(
1̃

1̂
− l̃ + 1

l̂ + 1

)
+

ñ

n̂

(
1̂2̃

2̂
− 1̃

)
+

1̃

1̂

(
−P̃3,l +

l̃ + 1

l̂ + 1
P̂1,l − 2̃ − 1̂2̃

2̂

)

+
l̃ + 1

l̂ + 1

(
P̃2,l + l̃ + 1 +

1̃

1̂
P̂l+2,1

)
.

Using momentum conservation and cancelling terms, this expression collapses to (3.10),

and thus (3.9) is proved.

Recall that to obtain the vertices (2.21), (2.22) in (2.19), we substitute the series (3.2)

and (3.7), which we have seen are holomorphic, into (2.14) and (2.15), which are also

holomorphic. Thus we have proven that the vertices in (2.19) are holomorphic. It follows

by Mansfield’s arguments [17] that these vertices when off-shell give the CSW continuations

of the MHV amplitudes, i.e. are the ones in (2.25). Nevertheless it is instructive to verify

that this really does work out in practice.

3.3 Three-point vertex

Since A (Ā) is, to lowest order, linear in B (B̄), the three-point vertex is simply the light-

cone gauge vertex (2.14). Transforming to 3-momentum space and casting in the form

(2.21), we have

V 2(123) = i
3̂

1̂2̂
(2 1). (3.12)

On the other hand, from (2.25) we expect

−i
3̂

1̂2̂

(1 2)3

(2 3)(3 1)
.

Substituting p3 = −p1 − p2 in the denominator, we readily see that these equations are

the same and thus simply verify that the light-cone gauge three-point vertex satisfies the

general formula (2.25) as expected:

V 2(123) =
1

2i

〈1 2〉3
〈2 3〉〈3 1〉 .

3.4 Four-point vertices

The four-point vertices receive contributions from (2.14) and the first non-trivial terms

in (3.2), (3.7), and also directly from (2.15), and thus are more exacting tests. We write

(2.15) in the same form as (2.21):

L
′−−++ =

∫

1234

{
W 2

1234 tr[Ā1̄Ā2̄A3̄A4̄] +
1

2
W 3

1234 tr[Ā1̄A2̄Ā3̄A4̄]

}
,

where

W 2(1234) = − 1̂3̂ + 2̂4̂

(1̂ + 4̂)2
and W 3(1234) =

1̂4̂ + 2̂3̂

(1̂ + 2̂)2
+

1̂2̂ + 3̂4̂

(1̂ + 4̂)2
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(after symmetrization). Therefore,

V 2(1234) =
1̂

5̂
V 2(523)Ξ2(5̄41) +

2̂

5̂
V 2(154)Ξ1(5̄23) + V 2(125)Υ(5̄34) + W 2(1234), (3.13)

where the momentum p5 is determined by conservation in each term (thus e.g. in the

first term p5 = p1 + p4). To compare this formula to the expected result (2.25) we map

both to unique functions of independent momenta. For example, we substitute for the last

momentum: p4 = −p1 − p2 − p3. It is then straightforward using computer algebra to

show that this coincides with the right hand side of (2.25), and thus:

V 2(1234) =
〈1 2〉3

〈2 3〉〈3 4〉〈4 1〉 .

For example, simplifying by partial fractions, both (2.25) and (3.13) give:

(1̂ + 2̂)2(1̂2̃ − 2̂1̃)

1̂2̂ [(1̂ + 2̂)3̃ − 3̂1̃ − 3̂2̃]
− 2̂(1̂ + 2̂ + 3̂)(1̂2̃ − 2̂1̃)

1̂(2̂ + 3̂)(2̂3̃ − 3̂2̃)
− 1̂3̂(1̂2̃ − 2̂1̃)

2̂(2̂ + 3̂)(1̂2̃ + 1̂3̃ − 2̂1̃ − 3̂1̃)
.

Similarly, after symmetrization,

V 3(1234) =
1̂

5̂
V 2(352)Ξ2(5̄41) +

3̂

5̂
V 2(512)Ξ1(5̄34)

+
3̂

5̂
V 2(154)Ξ2(5̄23) +

1̂

5̂
V 2(534)Ξ1(5̄12) + W 3(1234),

and it is straightforward to confirm as above that this agrees with (2.25):

V 3(1234) =
2̂4̂

1̂3̂

(1 3)4

(1 2)(2 3)(3 4)(4 1)
.

3.5 Five-point vertices

The five-point vertices leave no doubt that the off-shell MHV vertices are produced: they

involve substituting up to the first three terms in the expansions (3.2), (3.7) into both

original vertices (2.14), (2.15). We find

V 2(12345) =
3̂

6̂
V 2(612)Ξ1(6̄345) +

1̂

7̂
V 2(726)Υ(6̄34)Ξ2(7̄51) + V 2(126)Υ(6̄345)

+
2̂

6̂

1̂

7̂
V 2(764)Ξ1(6̄23)Ξ2(7̄51) +

2̂

6̂
V 2(167)Ξ1(6̄23)Υ(7̄45)

+
2̂

6̂
V 2(165)Ξ1(6̄234) + W 2(1236)Υ(6̄45) + W 2(1265)Υ(6̄34)

+
2̂

6̂
W 2(1645)Ξ1(6̄23) +

1̂

6̂
W 2(6234)Ξ2(6̄51),

V 3(12345) =
3̂

6̂
V 2(612)Ξ1(6̄345) +

1̂

6̂
V 2(634)Ξ2(6̄512) +

1̂

6̂
V 2(637)Ξ1(6̄12)Υ(7̄45)

+
1̂

6̂

3̂

7̂
V 2(675)Ξ1(6̄12)Ξ1(7̄34) +

1̂

7̂

3̂

6̂
V 2(672)Ξ1(6̄34)Ξ2(7̄51)
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+
1̂

6̂

3̂

7̂
V 2(674)Ξ2(6̄51)Ξ2(7̄23) +

3̂

6̂
V 2(167)Ξ2(6̄23)Υ(7̄45)

+
3̂

6̂
V 2(165)Ξ2(6̄234) +

1̂

6̂
V 2(362)Ξ3(6̄451) +

3̂

6̂
W 2(1645)Ξ2(6̄23)

+
1̂

6̂
W 2(6345)Ξ1(6̄12) +

3̂

6̂
W 3(1265)Ξ2(6̄34) +

1̂

6̂
W 3(3462)Ξ2(6̄51)

+ W 3(1236)Υ(6̄45)

(where, like before, indices 6 and 7 label momenta that are uniquely determined in terms

of the first five by momentum conservation). Again, eliminating p5 in favour of the first

four momenta and doing likewise for the corresponding right hand sides in (2.25), we find

the expressions agree, and thus confirm that

V 2(12345) = 2i
〈1 2〉3

〈2 3〉〈3 4〉〈4 5〉〈5 1〉 , and

V 3(12345) = 2i
〈1 3〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 1〉 .

4. Equivalence theorem matching factors

Even if a change of field variables from A to B turns the light-cone gauge Lagrangian

into an MHV-rules Lagrangian, this does not mean necessarily that one-loop and higher

contributions are obtained purely by using the CSW rules. We have to remember that

wavefunction renormalization terms, which we have already referred to as ET matching

factors, are also generated [1, 20].

Let us recall that an S-matrix element is obtained by computing the amputated Green

function (the LSZ procedure). Thus to the action (2.11), we should add the source terms
∫

d4xJaĀa + J̄aAa, (4.1)

where, after amputating propagators 〈A Ā〉(p), by multiplying by −ip2 and taking the

on-shell limit p2 → 0, we see that J acts as a source for positive helicity A legs in the

amputated Green function (and likewise J̄ for negative helicity Ā legs).

Now, substituting the series (3.2) and (3.7) into (4.1), we see that at tree-level the pro-

cess of multiplying by −ip2 and taking the on-shell limit, kills all terms but the first, which

survives because these generate cancelling poles via the propagators 〈B B̄〉(p). Therefore,

we can effectively write the source terms as
∫

d4xJaB̄a + J̄aBa.

This is the tree-level content of the Equivalence Theorem.

At one loop and higher, the only change to this conclusion is that we can use the

vertices in the expansions (3.2), (3.7) and those of the Lagrangian, viz. (2.21), to form

self-energy-like diagrams, cf. figure 1. Since these again attach to propagators carrying the

external momentum pµ, they survive the process of amputation.
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These ET matching factors are not explicitly Lorentz invariant, a consequence of both

the light-cone axial gauge and the change to B fields. However, if everything is defined cor-

rectly, Lorentz invariance should be recovered in the process of forming S-matrix elements.

Therefore we should find that these matching factors depend only on p2, which is sent to

zero. Since these self-energy-like diagrams then depend on no scale at all, in dimensional

regularisation we must set them to zero.

+ ++

+

−

−p

(a)

− −−

+

+

−p

+
− −+

−

−

+p

(b)

Figure 1: Topology of the one-loop ET matching factors, with (a) the contribution to negative

helicity B̄ legs; and (b) the contribution to positive helicity B legs. Wavy lines denote A and Ā

fields, straight lines B and B̄.

We now confirm these conclusions at one loop. The terms in figure 1 contribute by mul-

tiplying the legs of the corresponding tree-level amplitude (computed using the CSW rules).

The diagrams in figure 1 contain both ultraviolet and infrared divergences. We derived the

vertices (3.2), (3.7) and (2.21) without using any regularisation. Strictly speaking, we

should therefore wait until a corresponding Lagrangian is supplied incorporating sufficient

regularisation. However, if we proceed with the calculation, näıvely applying dimensional

regularisation where needed, we can expect to get right the most divergent pieces.

From the diagram figure 1(a), using (3.2) and (3.12), we obtain

−1

2
g2CA

∫
d4q

(2π)4
Υ(−p, p + q,−q)V 2(q,−p − q, p)

q2(p + q)2
= −ip̂ g2CA

∫
d4q

(2π)4
1

q2(p + q)2q̂
(4.2)

where a factor 4g2 arises from the multiplier in (2.11), a factor 1/4 arises for converting

dq dq̄ dq̂ dq̌ to the dqtdq1dq2dq3 taken above, and CA/2 arises from evaluating the trace over

the various products of generators, CA being the adjoint Casimir [so CA = N for SU(N)].

The right hand side follows after using partial fractions and shifts in loop momentum. We

can write it in Lorentz invariant fashion using µ, and furthermore map it to D = 4 − 2ε

dimensions:

−ig2CA µ·p
∫

dDq

(2π)D
1

q2(p + q)2µ·q . (4.3)

In order to evaluate the integral we need to keep p off-shell and let p2 → 0 at the end. This

is consistent with the way this contribution arises through the LSZ procedure.

The integral has already been evaluated in ref. [23] and we reproduce the result in the

appendix. However we can see that it vanishes in the p2 → 0 limit without calculation.

By Lorentz invariance, the result can only depend on p2 and µ·p (µ2 being zero). However

since the expression is independent of r when scaled as µ 7→ rµ, we see that the result does
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not in fact depend on µ ·p. We thus confirm that the integral depends only on the scale

p2 → 0 and thus must be set to zero, as required in dimensional regularisation.3

Now we turn to the two diagrams of figure 1(b). Using (3.7) and (3.12), we obtain

1

2
g2CA

∫
d4q

(2π)4
1

q2(p + q)2

(
1 +

q̂

p̂

)
Υ(p + q,−q,−p)V 2(p, q,−p − q)

− 1

2
g2CA

∫
d4q

(2π)4
1

q2(p + q)2
q̂

p̂
Υ(−q,−p, p + q)V 2(−p − q, p, q),

which simplifies to

−ig2CA

∫
d4q

(2π)4
1

q2(p + q)2
(p̂ + q̂)3

q̂p̂2
. (4.4)

Writing this in a Lorentz invariant way in D dimensions gives

−ig2CA

∫
dDq

(2π)D
1

q2(p + q)2
(µ·p + µ·q)3
µ·q(µ·p)2

. (4.5)

This integral is also evaluated off shell in the appendix, however again we see that this

expression is independent of µ·p and thus depends only on the scale p2, forcing the integral

to vanish on shell, in dimensional regularisation.

Finally we would like to note that in this case the contribution contains the term

11

6

g2CA

(4π)2
1

ε
(−p2)−ε,

arising from an ultraviolet divergence. It is tempting to try and interpret this in the

case where p2 is small but non-zero, since if we add the divergence to the B tree-level

matching factor (which is just Z+ = 1), it is precisely of the correct form to be cancelled

by renormalizing a factor of the bare coupling constant g0, such as appears in the tree-level

MHV amplitude. The left-over ln(−p2) would be expected to cancel such a term in tree-

level bremsstrahlung from off-shell positive helicity gluons. However this cannot be the

whole story. In particular we expect other divergences in the one-loop amplitudes obtained

using MHV-rules.

5. Conclusions

We have seen that the direct series solution of the transformation proposed in ref. [17] does

indeed yield the vertices (2.25) necessary to reproduce the CSW rules at tree level.

A key step in making the expansions manageable was to recognize that all the group

theory factors could be absorbed into the fields, allowing also the derivation of compact

recurrence relations (3.3), (3.8). We were able to solve these and thus discovered very

simple expressions (3.6), (3.9) for the coefficients of the expansion of A and Ā, in terms

of the “MHV-frame” B field to all orders. We expect that these explicit expressions will

3In more detail, by dimensions the integral depends only on p
2 through the factor (−p

2)−ε. The vanishing

of the integral is then fully justified if we keep ε < 0 as p → 0.
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be useful for further developments in the subject. Of particular note is that the expan-

sion coefficients are purely holomorphic — a property we would like to understand on a

more profound basis than we do at present. It follows that all the Lagrangian vertices

(2.21) are also holomorphic. We can then use the arguments as given in ref. [17] to prove

that all these vertices must correspond to the CSW off-shell extension of MHV-rules ver-

tices.

We would like to mention that the comparison between the explicitly derived vertices

that come out of the expansion and MHV vertices was very straightforward to do alge-

braically once the spinors were converted into momentum components using (2.3) and (2.4).

This is because it is then straightforward to eliminate one of the momentum arguments by

using momentum conservation and from there obtain a unique representation of the vertex

function. It is surely the case that such a procedure would allow verification of algebraic

(rather than just numerical) equivalence for different representations of other amplitudes

in the literature.

In the light of what we have learned, it is obvious that lying behind the CSW rules is

light-cone quantization. The fixed spinor η introduced in ref. [4] defines a preferred null

direction which we have seen is the same direction as the null direction µ defining light-cone

time in light-cone quantization. We note that it is the locality of the resulting vertices in

light-cone time which is actually exploited when applying the Feynman Tree Theorem in

ref. [15].

It is difficult to overstress the potential importance of the program started by ref. [17].

The spinor/twistor methods have been very successful at tree level and for cut-constructible

pieces at one loop. This is the natural domain for methods inherently tied to the structure of

tree-level four-dimensional on-shell scattering processes. Progress has been limited beyond

this domain (see however ref. [24]).

However, since it transpires that these methods are a direct consequence of a change of

field variables, extending these methods simply means applying well understood techniques

from quantum field theory. For example, it is now obvious that the CSW rules apply to

fully off-shell amplitudes, the external spinors being continued off-shell using the CSW

prescription.

It also can no longer be in doubt that these methods can be appropriately regularised

(for computing general quantum corrections): we can simply apply our favourite method to

the Yang-Mills Lagrangian and trace through the consequences for the change of variables.

The real question is whether a regularisation can be applied (hopefully dimensional regu-

larisation appropriately adapted) in such a way as to preserve sufficiently the simplifying

power of these methods.

These regularised CSW methods will then apply to the whole amplitude to any number

of loops, excepting only that we must multiply by the correct ET matching factors. Of

course, as is well known, we cannot compute the n-point one-loop all “+” amplitude or the

n-point amplitude with just one negative helicity leg, using only MHV rules [16]. These

amplitudes are non-vanishing but finite [25] and of course contain no cut-constructible part.

It is thus a reasonable assumption that these amplitudes are missing simply because the

extra regularisation structure is missing.
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Another possible extension is to develop mixed representations for computing am-

plitudes, where gluonic parts can be computed in the “MHV frame” by performing the

relevant change of variables, while particles’ interactions that do not benefit from this (e.g.

involving massive particles) can be computed in the normal “Feynman rules frame”. It is

even possible to consider mixed representations for amplitudes containing the same field.

In section 4, we investigated the quantum contributions to the ET matching factors,

which are Z+ = Z− = 1 at tree level, and which multiply S-matrix elements computed

using CSW rules. These are two-point contributions formed from the expansion coefficients

(3.6), (3.9) and the MHV-rules vertices (2.25). Although Lorentz invariance has been

broken by the light-cone gauge and the change of field variables, it should be recovered

when computing S-matrix elements. Therefore we expect that the matching factors can

only depend on the external momentum squared of the scattered particle, so providing we

are dealing with only massless particles, the one-loop and higher-loop contributions depend

on no scale at all and must be set to zero in dimensional regularisation. We verified this

argument for the divergent parts at one loop, giving also explicit off-shell expressions for

these factors. We note that in general certain on-shell contributions to the ET matching

factors could prove to be non-zero when massive particles are included in the theory.
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A. Off-shell matching factors

We confirm the result [23]
1

ε2
g2CA cΓ(−p2)−ε (A.1)

for integral (4.3), where the standard one-loop factor cΓ is

cΓ =
Γ(1 + ε)Γ2(1 − ε)

(4π)2−εΓ(1 − 2ε)
.

Temporarily ignoring −ig2CA and combining denominators in (4.3) using Feynman param-

eters we have

4µ·p
∫

dDq

(2π)D
dα dβ dγ δ(1 − α − β − γ)

1

[αq2 + β(p + q)2 + 2γµ·q]3
.

We note in passing that this has only infrared divergences. Performing the momentum

integral, the α integral, and substituting β = ρ(1 − ω) and γ = ρω, yields

−2iµ·p Γ(1 + ε)

(4π)2−ε

∫ 1

0
dρ

∫ 1

0
dω ρ−ε(1 − ω)−1−ε(1 − ρω)−1+2ε

{
2ρωµ·p − (1 − ρ)p2

}−1−ε
.
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As noted below (4.3), this integral does not in fact depend on µ·p. Exploiting this [23], we

set µ·p > 0, substitute ω 7→ ω/µ·p and then let µ·p → ∞. The result,

−2i
Γ(1 + ε)

(4π)2−ε

∫ 1

0
dρ

∫ ∞

0
dω ρ−ε

{
2ρω − (1 − ρ)p2

}−1−ε
,

is readily evaluated and gives (A.1) on reinstating −ig2CA.

Expanding the numerator in (4.5), the (µ · p)3 term is identical to (4.3) and thus

gives (A.1). The other terms do not have µ · q on the denominator and are therefore

straightforward to evaluate. (For p off-shell, they have only ultraviolet divergences.) The

result for (4.5) is therefore

1

ε2
g2CA cΓ(−p2)−ε +

1

ε
g2CA cΓ

11 − 7ε

(6 − 4ε)(1 − 2ε)
(−p2)−ε.
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